lunes, 13 de agosto de 2012

CAPITULO 6 INTERFACES Y SUBINTERFACES



Uso del router como gateway

El enrutamiento tradicional requiere de routers que tengan interfaces físicas múltiples para facilitar el enrutamiento entre VLAN. El router realiza el enrutamiento al conectar cada una de sus interfaces físicas a una VLAN única. Además, cada interfaz está configurada con una dirección IP para la subred asociada con la VLAN conectada a ésta. Al configurar las direcciones IP en las interfaces físicas, los dispositivos de red conectados a cada una de las VLAN pueden comunicarse con el router mediante la interfaz física conectada a la misma VLAN. En esta configuración los dispositivos de red pueden utilizar el router como un gateway para acceder a los dispositivos conectados a las otras VLAN.

El proceso de enrutamiento requiere del dispositivo de origen para determinar si el dispositivo de destino es local o remoto con respecto a la subred local. El dispositivo de origen realiza esta acción comparando las direcciones de origen y destino con la máscara de subred. Una vez que se determinó que la dirección de destino está en una red remota, el dispositivo de origen debe identificar si es necesario reenviar el paquete para alcanzar el dispositivo de destino. El dispositivo de origen examina la tabla de enrutamiento local para determinar dónde es necesario enviar los datos. Generalmente, los dispositivos utilizan los gateways predeterminados como destino para todo el tráfico que necesita abandonar la subred local. El gateway predeterminado es la ruta que el dispositivo utiliza cuando no tiene otra ruta explícitamente definida hacia la red de destino. La interfaz del router en la subred local actúa como la gateway predeterminada para el dispositivo emisor.

Para superar las limitaciones de hardware del enrutamiento entre VLAN basado en interfaces físicas del router, se utilizan subinterfaces virtuales y enlaces troncales, como en el ejemplo del router-on-a-stick descrito anteriormente. Las subinterfaces son interfaces virtuales basadas en software asignadas a interfaces físicas. Cada subinterfaz se configura con su propia dirección IP, máscara de subred y asignación de VLAN única, lo que permite que una interfaz física única sea parte en forma simultánea de múltiples redes lógicas. Esto resulta útil cuando se realiza el enrutamiento entre VLAN en redes con múltiples VLAN y pocas interfaces físicas del router.

Al configurar el enrutamiento entre VLAN mediante el modelo router-on-a-stick, la interfaz física del router debe estar conectada al enlace troncal en el switch adyacente. Las subinterfaces se crean para cada VLAN/subred única en la red. A cada subinterfaz se le asigna una dirección IP específica a la subred de la cual será parte y se configura en tramas con etiqueta de la VLAN para la VLAN con la cual interactuará la interfaz. De esa manera, el router puede mantener separado el tráfico de cada subinterfaz a medida que atraviesa el enlace troncal hacia el switch.

Funcionalmente, el modelo router-on-a-stick para el enrutamiento entre VLAN es el mismo que se utiliza para el modelo de enrutamiento tradicional, pero en lugar de utilizar las interfaces físicas para realizar el enrutamiento, se utilizan las subinterfaces de una interfaz única.

Límites del puerto

Las interfaces físicas están configuradas para tener una interfaz por VLAN en la red. En las redes con muchas VLAN, no es posible utilizar un único router para realizar el enrutamiento entre VLAN. Los routers tienen limitaciones físicas para evitar que contengan una gran cantidad de interfaces físicas. En cambio, si es una prioridad evitar el uso de subinterfaces, puede utilizar múltiples routers para realizar el enrutamiento entre VLAN para todas las VLAN.

Las subinterfaces permiten ampliar el router para acomodar más VLAN que las permitidas por las interfaces físicas. El enrutamiento entre VLAN en grandes entornos con muchas VLAN puede acomodarse mejor si se utiliza una interfaz física única con muchas subinterfaces.

Desempeño

Debido a que no existe contención para ancho de banda en interfaces físicas separadas, las interfaces físicas tienen un mejor rendimiento cuando se les compara con el uso de subinterfaces. El tráfico de cada VLAN conectada tiene acceso al ancho de banda completo de la interfaz física del router conectado a dicha VLAN para el enrutamiento entre VLAN. 

Cuando se utilizan subinterfaces para el enrutamiento entre VLAN, el tráfico que se está enrutando compite por ancho de banda en la interfaz física única. En una red ocupada, esto puede causar un cuello de botella en la comunicación. Para balancear la carga de tráfico en una interfaz física, las subinterfaces se configuran en múltiples interfaces físicas, lo que da como resultado una menor contención entre el tráfico de la VLAN.

Puertos de acceso y puertos de enlace troncal

La conexión de las interfaces físicas para el enrutamiento entre VLAN requiere que los puertos del switch estén configurados como puertos de acceso. Las subinterfaces requieren que el puerto del switch esté configurado como un puerto de enlace troncal para que pueda aceptar el tráfico etiquetado de la VLAN en el enlace troncal. Al utilizar subinterfaces, muchas VLAN pueden enrutarse sobre un enlace troncal único, en lugar de utilizar una interfaz física única para cada VLAN.

Costo

Con respecto a la parte financiera, resulta más económico utilizar subinterfaces, en lugar de interfaces físicas separadas. Los routers que tienen muchas interfaces físicas son más caros que los routers con una interfaz única. Además, si tiene un router con muchas interfaces físicas, cada interfaz está conectada a un puerto del switch separado, lo que consume puertos del switch adicionales en la red. Los puertos del switch son un recurso costoso en switches de alto rendimiento. Al consumir puertos adicionales para las funciones de enrutamiento entre VLAN, el switch y el router elevan el costo total de la solución de enrutamiento entre VLAN. 

Complejidad

El uso de subinterfaces para el enrutamiento entre VLAN tiene como resultado una configuración física menos compleja que el uso de interfaces físicas separadas, debido a que la cantidad de cables de red física que interconectan el router con el switch es menor. Con menos cables, hay menos confusión acerca de dónde está conectado el cable en el switch. Dado que las VLAN son interconectados mediante enlaces troncales en un enlace único, resulta más fácil resolver el problema de las conexiones físicas.
Por otro lado, el uso de subinterfaces con un puerto de enlace troncal tiene como resultado una configuración de software más compleja, que puede ser difícil de solucionar en caso de presentarse problemas. En el modelo router-on-a-stick se utiliza sólo una interfaz única para alojar todas las VLAN. Si una VLAN tiene problemas al enrutarse con otras VLAN, no puede simplemente rastrear el cable para ver si éste está conectado en el puerto correcto. Es necesario verificar si el puerto del switch está configurado para ser un enlace troncal y también que la VLAN no esté siendo filtrada en ninguno de los enlaces troncales antes de que llegue a la interfaz del router. Además, es necesario verificar si la subinterfaz del router está configurada para utilizar el ID de la VLAN y la dirección IP correctos, para la subred asociada con dicha VLAN.





Capitulo 7 Redes Wireless !!






Redes Wireless

Muchas redes de negocios actuales dependen de las LAN basadas en switch para las operaciones diarias dentro de las oficinas. Sin embargo, los trabajadores son cada vez más móviles y desean mantener el acceso a los recursos de LAN de sus negocios desde otras ubicaciones además de sus escritorios. Los trabajadores en la oficina desean llevar sus computadoras portátiles a reuniones o a la oficina de sus colegas. Cuando se utiliza una computadora portátil en otra ubicación, no es conveniente depender de una conexión conectada por cable. En este tema, aprenderá acerca de las LAN inalámbricas y cómo benefician a su negocio. También explorará las consideraciones de seguridad asociadas con las WLAN.



Las comunicaciones portátiles se convirtieron en una expectativa en muchos países alrededor del mundo. Puede ver movilidad y portabilidad en todo, desde teclados inalámbricos y audífonos, hasta teléfonos satelitales y sistemas de posicionamiento global (GPS). La mezcla de tecnologías inalámbricas en diferentes tipos de redes permite que los trabajadores tengan movilidad.



Comparación entre una WLAN y una LAN

Las LAN inalámbricas comparten un origen similar con las LAN Ethernet. El IEEE adoptó la cartera 802 LAN/MAN de estándares de arquitectura de red de computadoras. Los dos grupos de trabajo 802 dominantes son Ethernet 802.3 y LAN inalámbrica 802.11. Sin embargo, hay diferencias importantes entre ellos.

Las WLAN utilizan radiofrecuencia (RF) en lugar de cables en la capa física y la subcapa MAC de la capa de enlace de datos. Comparada con el cable, la RF tiene las siguientes características:
La RF no tiene límites, como los límites de un cable envuelto. La falta de dicho límite permite a las tramas de datos viajar sobre el medio RF para estar disponibles para cualquiera que pueda recibir la señal RF. 
La señal RF no está protegida de señales exteriores, como sí lo está el cable en su envoltura aislante. Las radios que funcionan independientemente en la misma área geográfica, pero que utilizan la misma RF o similar, pueden interferirse mutuamente. 
La transmisión RF está sujeta a los mismos desafíos inherentes a cualquier tecnología basada en ondas, como la radio comercial. Por ejemplo: a medida que usted se aleja del origen, puede oír estaciones superpuestas una sobre otra o escuchar estática en la transmisión. Con el tiempo, puede perder la señal por completo. Las LAN conectadas tienen cables que son del largo apropiado para mantener la fuerza de la señal. 
Las bandas RF se regulan en forma diferente en cada país. La utilización de las WLAN está sujeta a regulaciones adicionales y a conjuntos de estándares que no se aplican a las LAN conectadas por cable.


Estándares de LAN inalámbricas

LAN inalámbrica 802.11 es un estándar IEEE que define cómo se utiliza la radiofrecuencia (RF) en las bandas sin licencia de frecuencia médica, científica e industrial (ISM) para la capa física y la subcapa MAC de enlaces inalámbricos.

Cuando el 802.11 se emitió por primera vez, prescribía tasas de datos de 1 - 2 Mb/s en la banda de 2.4 GHz. En ese momento, las LAN conectadas por cable operaban a 10 Mb/s, de modo que la nueva tecnología inalámbrica no se adoptó con entusiasmo. A partir de entonces, los estándares de LAN inalámbrica mejoraron continuamente con la edición de IEEE 802.11a, IEEE 802.11b, IEEE 802.11g y el borrador 802.11n.

La elección típica sobre qué estándar WLAN utilizar se basa en las tasas de datos. Por ejemplo: 802.11a y g pueden admitir hasta 54 Mb/s, mientras que 802.11b admite hasta un máximo de 11 Mb/s, lo que implica que 802.11b es un estándar "lento" y que 802.11 a y g son los preferidos. Un cuarto borrador WLAN, 802.11n, excede las tasas de datos disponibles en la actualidad. El IEEE 802.11n debe ser ratificado para septiembre de 2008. 



Importante: el sector de comunicaciones de la Unión internacional de telecomunicaciones (ITU-R) asigna las bandas RF. La ITU-R designa las frecuencias de banda de 900 MHz, 2.4 GHz, y 5 GHz como sin licencia para las comunidades ISM. A pesar de que las bandas ISM no tienen licencia a nivel global, sí están sujetas a regulaciones locales. La FCC administra la utilización de estas bandas en los EE. UU., y la ETSI hace lo propio en Europa. Estos temas tendrán un impacto en su decisión a la hora de seleccionar los componentes inalámbricos en una implementación inalámbrica. 




Certificación Wi-Fi 

La Wi-Fi Alliance (http://www.wi-fi.org), una asociación de comercio industrial global sin fines de lucro, dedicada a promover el crecimiento y aceptación de las WLAN proporciona la certificación Wi-Fi. Apreciará mejor la importancia de la certificación Wi-Fi si considera el rol de la Wi-Fi Alliance en el contexto de los estándares WLAN.

Los estándares aseguran interoperabilidad entre dispositivos hechos por diferentes fabricantes. Las tres organizaciones clave que influencian los estándares WLAN en todo el mundo son:

ITU-R
IEEE


Wi-Fi Alliance


El ITU-R regula la asignación del espectro RF y órbitas satelitales. Éstos se describen como recursos naturales finitos que se encuentran en demanda por parte de clientes, como redes inalámbricas fijas, redes inalámbricas móviles y sistemas de posicionamiento global.

El IEEE desarrolló y mantiene los estándares para redes de área local y metropolitanas con la familia de estándares IEEE 802 LAN/MAN. El IEEE 802 es administrado por el comité de estándares IEEE 802 LAN/MAN (LMSC), que supervisa múltiples grupos de trabajo. Los estándares dominantes en la familia IEEE 802 son 802.3 Ethernet, 802.5 Token Ring, y 802.11 LAN inalámbrica.

A pesar de que el IEEE especificó estándares para los dispositivos de modulación RF, no especificó estándares de fabricación, de modo que las interpretaciones de los estándares 802.11 por parte de los diferentes proveedores pueden causar problemas de interoperabilidad entre sus dispositivos. 

La Wi-Fi Alliance es una asociación de proveedores cuyo objetivo es mejorar la interoperabilidad de productos que están basados en el estándar 802.11, y certifica proveedores en conformidad con las normas de la industria y adhesión a los estándares. 


NIC inalámbricas

Puede que ya esté utilizando una red inalámbrica en su hogar, en un cyber café local o en la escuela a la que concurre. ¿Alguna vez se preguntó qué componentes de hardware están involucrados en su acceso inalámbrico a la red local o a Internet? En este tema, aprenderá qué componentes están disponibles para implementar las WLAN y cómo se utiliza cada uno de ellos en la infraestructura inalámbrica.

Para revisar, los componentes constitutivos de una WLAN son estaciones cliente que conectan a los puntos de acceso, que se conectan, a su vez, a la infraestructura de la red. El dispositivo que hace que una estación cliente pueda enviar y recibir señales RF es la NIC inalámbrica.


Routers inalámbricos

Los routers inalámbricos cumplen la función de punto de acceso, switch Ethernet y router. Por ejemplo: los Linksys WRT300N utilizados son en realidad tres dispositivos en una caja. Primero está el punto de acceso inalámbrico, que cumple las funciones típicas de un punto de acceso. Un switch integrado de cuatro puertos full-duplex, 10/100 proporciona la conectividad a los dispositivos conectados por cable. Finalmente, la función de router provee un gateway para conectar a otras infraestructuras de red.

El WRT300N se utiliza más frecuentemente como dispositivo de acceso inalámbrico en residencias o negocios pequeños. La carga esperada en el dispositivo es lo suficientemente pequeña como para administrar la provisión de WLAN, 802.3 Ethernet, y conectar a un ISP.



Topologías 802.11

Las LAN inalámbricas pueden utilizar diferentes topologías de red. Al describir estas topologías, la pieza fundamental de la arquitectura de la WLAN IEEE 802.11 es el conjunto de servicios básicos (BSS). El estándar define al BSS como un grupo de estaciones que se comunican entre ellas. 







lunes, 16 de julio de 2012

CAPITULO V STP







Redundancia en una red jerárquica

  El modelo de diseño jerárquico se enfoca en los temas encontrados en las topologías de red de modelo plano. Uno de esos temas es la redundancia. La redundancia de Capa 2 mejora la disponibilidad de la red con la implementación de rutas de red alternas mediante el agregado de equipos y cables. Al contar con varias rutas para la transmisión de los datos en la red, la interrupción de una sola ruta no genera impacto en la conectividad de los dispositivos en la red.


Bucles de la Capa 2 

La redundancia es una parte importante del diseño jerárquico. Pese a que es importante para la disponibilidad, existen algunas consideraciones que deben atenderse antes de que la redundancia sea posible en una red.

Cuando existen varias rutas entre dos dispositivos en la red y STP se ha deshabilitado en los switches, puede generarse un bucle de Capa 2. Si STP está habilitado en estos switches, que es lo predeterminado, el bucle de Capa 2 puede evitarse.

Las tramas de Ethernet no poseen un tiempo de vida (TTL, Time to Live) como los paquetes IP que viajan por los routers. En consecuencia, si no finalizan de manera adecuada en una red conmutada, las mismas siguen rebotando de switch en switch indefinidamente o hasta que se interrumpa un enlace y elimine el bucle.


Tormentas de broadcast

Una tormenta de broadcast se produce cuando existen tantas tramas de broadcast atrapadas en un bucle de Capa 2, que se consume todo el ancho de banda disponible. En consecuencia, no existe ancho de banda disponible para el tráfico legítimo y la red queda no disponible para la comunicación de datos.

La tormenta de broadcast es inevitable en una red con bucles. A medida que más dispositivos envían broadcast a la red, aumenta la cantidad de tráfico que queda atrapado en el bucle, lo que eventualmente genera una tormenta de broadcast que produce la falla de la red.


Tramas de unicast duplicadas

Las tramas de broadcast no son el único tipo de tramas que son afectadas por los bucles. Las tramas de unicast enviadas a una red con bucles pueden generar tramas duplicadas que llegan al dispositivo de destino.

Topología STP

La redundancia aumenta la disponibilidad de la topología de red al proteger la red de un único punto de falla, como un cable de red o switch que fallan. Cuando se introduce la redundancia en un diseño de la Capa 2, pueden generarse bucles y tramas duplicadas. Los bucles y las tramas duplicadas pueden tener consecuencias graves en la red. El protocolo spanning tree (STP) fue desarrollado para enfrentar estos inconvenientes.



STP asegura que exista sólo una ruta lógica entre todos los destinos de la red, al realizar un bloqueo de forma intencional a aquellas rutas redundantes que puedan ocasionar un bucle. Un puerto se considera bloqueado cuando el tráfico de la red no puede ingresar ni salir del puerto. Esto no incluye las tramas de unidad de datos del protocolo de puentes (BPDU) utilizadas por STP para evitar bucles. Aprenderá más acerca de las tramas de BPDU de STP más adelante en este capítulo. El bloqueo de las rutas redundantes es fundamental para evitar bucles en la red. 


                                                                  Algoritmo STP

STP utiliza el algoritmo de spanning tree (STA) para determinar los puertos de switch de la red que deben configurarse para el bloqueo a fin de evitar que se generen bucles. El STA designa un único switch como puente raíz y lo utiliza como punto de referencia para todos los cálculos de rutas. En la figura, el puente raíz, el switch S1, se escoge a través de un proceso de elección. Todos los switches que comparten STP intercambian tramas de BPDU para determinar el switch que posee el menor ID de puente (BID) en la red. 

La BPDU es la trama de mensaje que se intercambia entre los switches en STP. Cada BPDU contiene un BID que identifica al switch que envió la BPDU. El BID contiene un valor de prioridad, la dirección MAC del switch emisor y un ID de sistema extendido opcional. Se determina el BID de menor valor mediante la combinación de estos tres campos. Aprenderá más acerca del puente raíz, la BPDU y el BID en temas posteriores.

                                                                          Puente raíz

Toda instancia de spanning-tree (LAN conmutada o dominio de broadcast) posee un switch designado como puente raíz. El puente raíz sirve como punto de referencia para todos los cálculos de spanning-tree para determinar las rutas redundantes que deben bloquearse.

Un proceso de elección determina el switch que se transforma en el puente raíz. 
A medida que los switches envían sus tramas de BPDU, los switches adyacentes del dominio de broadcast leen la información del ID de raíz de la trama de BPDU. Si el ID de raíz de la BPDU recibida es menor que el ID de raíz del switch receptor, este último actualiza su ID de raíz mediante la identificación del switch adyacente como el puente raíz. Nota: Es posible que no sea un switch adyacente, sino cualquier otro switch del dominio de broadcast. Luego el switch envía nuevas tramas de BPDU con el menor ID de raíz a los otros switches adyacentes. Eventualmente, el switch con el menor BID es identificado finalmente como puente raíz para la instancia de spanning-tree. 
                                               

                                                       Las mejores rutas al puente raíz

Cuando se ha designado el puente raíz para la instancia de spanning-tree, el STA comienza el proceso de determinar las mejores rutas hacia el puente raíz desde todos los destinos del dominio de broadcast. La información de ruta se determina mediante la suma de los costos individuales de los puertos que atraviesa la ruta desde el destino al puente raíz.

Los costos de los puertos predeterminados se definen por la velocidad a la que funcionan los mismos. En la tabla, puede verse que los puertos Ethernet de 10 Gb/s poseen un costo de puerto de 2, los puertos Ethernet de 1 Gb/s poseen un costo de puerto de 4, los puertos Fast Ethernet de 100 Mb/s poseen un costo de puerto de 19 y los puertos Ethernet de 10 Mb/s poseen un costo de puerto de 100. 



Funciones de los puertos 
El puente raíz es elegido para la instancia de spanning-tree. La ubicación del puente raíz en la topología de red determina la forma en que se calculan las funciones de los puertos. Este tema describe la forma en que los puertos de switch se configuran para funciones específicas para evitar la posibilidad de bucles en la red.

Existen cuatro funciones de puertos distintas en las que los puertos de switch se configuran automáticamente durante el proceso de spanning-tree.

Puerto raíz
El puerto raíz existe en los puentes que no son raíz y es el puerto de switch con la mejor ruta hacia el puente raíz. Los puertos raíz envían el tráfico a través del puente raíz. Las direcciones MAC de origen de las tramas recibidas en el puerto raíz pueden llenar por completo la tabla MAC. Sólo se permite un puerto raíz por puente.

Puerto designado
El puerto designado existe en los puentes raíz y en los que no son raíz. Para los puentes raíz, todos los puertos de switch son designados. Para los puentes que no son raíz, un puerto designado es el switch que recibe y envía tramas hacia el puente raíz según sea necesario. Sólo se permite un puerto designado por segmento. Si existen varios switches en el mismo segmento, un proceso de elección determina el switch designado y el puerto de switch correspondiente comienza a enviar tramas para ese segmento. Los puertos designados pueden llenar por completo la tabla MAC.

Puerto no designado
El puerto no designado es aquel puerto de switch que está bloqueado, de manera que no envía tramas de datos ni llena la tabla de direcciones MAC con direcciones de origen. Un puerto no designado no es un puerto raíz o un puerto designado. Para algunas variantes de STP, el puerto no designado se denomina puerto alternativo.

Puerto deshabilitado
El puerto deshabilitado es un puerto de switch que está administrativamente desconectado. Un puerto deshabilitado no funciona en el proceso de spanning-tree. 



CAPITULO 4 VTP....



                                                    ¿Qué es el VTP?


El VTP permite a un administrador de red configurar un switch de modo que propagará las configuraciones de la VLAN hacia los otros switches en la red.  El switch se puede configurar en la función de servidor del VTP o de cliente del VTP. El VTP sólo aprende sobre las VLAN de rango normal (ID de VLAN 1 a 1005). Las VLAN de rango extendido (ID mayor a 1005) no son admitidas por el VTP. 


VTP = VLAN Trunking Protocol, un protocolo usado para configurar y administrar VLANs en equipos Cisco.
Los switches pueden operar en 3 modos VTP diferentes
Servidor – Cliente – Transparente
En modo server (por defecto cualquier sw catalyst configurado para usar VTP arranca en este modo), en cada dominio VTP debe existir al menos UN sw en modo server.
En este modo se puede crear, modificar, agregar o borrar cualquier informacion referida a VLANs, la cual sera replicada en TODOS los otros sw del dominio.
En modo cliente el sw recibe anuncios y efectua cambios de acuerdo los contenidos de estos avisos
En este modo NO se puede cambiar la informacion de las VLAN
En modo transparent el sw forwardeara los mensajes VTP, pero NO usara la informacion que recibe.
Las VLAN creadas, borradas o modificadas en este estado NO se aplicaran a todo el dominio, SOLO APLICAN LOCALMENTE, o sea, a este sw unicamente.

Cuando un sw recibe un VTP update, chequea el nombre de dominio VTP y el numero de revision almacenada en el aviso.Si la informacion es para un nombre de dominio distinto, se ignora, y si el numero de revision es menor al numero actualmente almacenado en la base de datos, es ignorado tambien.


                                                 Componentes del VTP


Existe una cantidad de componentes clave con los que necesita familiarizarse al aprender sobre el VTP. Aquí se muestra una breve descripción de los componentes, que se explicarán más adelante a medida que se avance en el capítulo. 


Dominio del VTP: consiste en uno o más switches interconectados. Todos los switches en un dominio comparten los detalles de configuración de la VLAN con las publicaciones del VTP. Un router o switch de Capa 3 define el límite de cada dominio.
Publicaciones del VTP: el VTP usa una jerarquía de publicaciones para distribuir y sincronizar las configuraciones de la VLAN a través de la red.



                                   Propagación del nombre de dominio del VTP




Para que un switch de cliente o servidor VTP participe en una red habilitada por el VTP, debe ser parte del mismo dominio. Cuando los switches están en diferentes dominios de VTP no intercambian los mensajes del VTP. Un servidor del VTP propaga el nombre de dominio del VTP a todos los switches. La propagación del nombre de dominio usa tres componentes del VTP: servidores, clientes y publicaciones. 

Estructura de trama del VTP

Las publicaciones (o mensajes) del VTP distribuyen nombre de dominio del VTP y cambios en la configuración de la VLAN a los switches habilitados por el VTP. En este punto, aprenderá sobre la estructura de la trama del VTP y cómo los tres tipos de publicaciones permiten al VTP distribuir y sincronizar las configuraciones de VLAN a través de toda la red. 


                                               Número de revisión del VTP
El número de revisión de la configuración es un número de 32 bits que indica el nivel de revisión para una trama del VTP. El número de configuración predeterminado para un switch es cero. Cada vez que se agrega o elimina una VLAN, se aumenta el número de revisión de la configuración. Cada dispositivo de VTP rastrea el número de revisión de configuración del VTP que se le asigna. 


Publicaciones de resumen .




La publicación del resumen contiene el nombre de dominio del VTP, el número actual de revisión y otros detalles de la configuración del VTP.

Se envían publicaciones de resumen:

Cada 5 minutos por el servidor o cliente del VTP para informar a los switches vecinos habilitados por el VTP del número de revisión actual de la configuración del VTP para su dominio del VTP.
Inmediatamente después de que se ha realizado una configuración.






jueves, 21 de junio de 2012

CAPITULO3


Beneficios de una VLAN

La productividad del usuario y la adaptabilidad de la red son impulsores clave para el crecimiento y el éxito del negocio.
Seguridad: los grupos que tienen datos sensibles se separan del resto de la red, disminuyendo las posibilidades de que ocurran violaciones de información confidencial.
Reducción de costos: el ahorro en el costo resulta de la poca necesidad de actualizaciones de red caras y usos más eficientes de enlaces y ancho de banda existente.
Mejor rendimiento: la división de las redes planas de Capa 2 en múltiples grupos lógicos de trabajo (dominios de broadcast) reduce el tráfico innecesario en la red y potencia el rendimiento.

Mitigación de la tormenta de broadcast: la división de una red en las VLAN reduce el número de dispositivos que pueden participar en una tormenta de broadcast.


VLAN de rango normal

Se utiliza en redes de pequeños y medianos negocios y empresas.
Se identifica mediante un ID de VLAN entre 1 y 1005.
Los ID de 1002 a 1005 se reservan para las VLAN Token Ring y FDDI.
Los ID 1 y 1002 a 1005 se crean automáticamente y no se pueden eliminar. Aprenderá más acerca de VLAN 1 más adelante en este capítulo.
Las configuraciones se almacenan dentro de un archivo de datos de la VLAN, denominado vlan.dat. El archivo vlan.dat se encuentra en la memoria flash del switch.
El protocolo de enlace troncal de la VLAN (VTP), que ayuda a administrar las configuraciones de la VLAN entre los switches, sólo puede asimilar las VLAN de rango normal y las almacena en el archivo de base de datos de la VLAN.



VLAN de rango extendido

Posibilita a los proveedores de servicios que amplíen sus infraestructuras a una cantidad de clientes mayor. Algunas empresas globales podrían ser lo suficientemente grandes como para necesitar los ID de las VLAN de rango extendido.
Se identifican mediante un ID de VLAN entre 1006 y 4094.
Admiten menos características de VLAN que las VLAN de rango normal.
Se guardan en el archivo de configuración en ejecución.
VTP no aprende las VLAN de rango extendido.


VLAN de datos

Una VLAN de datos es una VLAN configurada para enviar sólo tráfico de datos generado por el usuario. Una VLAN podría enviar tráfico basado en voz o tráfico utilizado para administrar el switch, pero este tráfico no sería parte de una VLAN de datos. Es una práctica común separar el tráfico de voz y de administración del tráfico de datos. 



VLAN de voz

Es fácil apreciar por qué se necesita una VLAN separada para admitir la Voz sobre IP (VoIP).

Tipos de tráfico de red

En CCNA Exploration: Aspectos básicos de networking, aprendió sobre los diferentes tipos de tráfico que puede manejar una LAN. Debido a que una VLAN tiene todas las características de una LAN, una VLAN debe incorporar el mismo tráfico de red que una LAN.

Administración de red y tráfico de control

Muchos tipos diferentes de tráfico de administración de red y de control pueden estar presentes en la red, como las actualizaciones de Cisco Discovery Protocol (CDP), el protocolo de administración de red simple (SNMP) y tráfico de Remote Monitoring (RMON).


Puertos de switch

Los puertos de switch son interfaces de Capa 2 únicamente asociados con un puerto físico. Los puertos de switch se utilizan para manejar la interfaz física y los protocolos asociados de Capa 2. No manejan enrutamiento o puenteo. Los puertos de switch pertenecen a una o más VLAN.

Modos de puertos de switch de VLAN

Cuando configura una VLAN debe asignarle un número de ID y le puede dar un nombre si lo desea. El propósito de las implementaciones de la VLAN es asociar con criterio los puertos con las VLAN particulares. Se configura el puerto para enviar una trama a una VLAN específica. Como se mencionó anteriormente, el usuario puede configurar una VLAN en el modo de voz para admitir tráfico de datos y de voz que llega desde un teléfono IP de Cisco. El usuario puede configurar un puerto para que pertenezca a una VLAN mediante la asignación de un modo de membresía que especifique el tipo de tráfico que envía el puerto y las VLAN a las que puede pertenecer. Se puede configurar un puerto para que admita estos tipos de VLAN:

VLAN estática: los puertos en un switch se asignan manualmente a una VLAN. Las VLAN estáticas se configuran por medio de la utilización de la CLI de Cisco. Esto también se puede llevar a cabo con las aplicaciones de administración de GUI, como el Asistente de red Cisco. Sin embargo, una característica conveniente de la CLI es que si asigna una interfaz a una VLAN que no existe, se crea la nueva VLAN para el usuario. Para ver un ejemplo de configuración de VLAN estática, haga clic en el botón Ejemplo de Modo estático en la figura. Cuado haya finalizado, haga clic en el botón Modos de puertos en la figura. Esta configuración no se examinará en detalle ahora. Se presentará más adelante en este capítulo.
VLAN dinámica: este modo no se utiliza ampliamente en las redes de producción y no se investiga en este curso. Sin embargo, es útil saber qué es una VLAN dinámica. La membresía de una VLAN de puerto dinámico se configura utilizando un servidor especial denominado Servidor de política de membresía de VLAN (VMPS). Con el VMPS, asigna puertos de switch a las VLAN basadas en forma dinámica en la dirección MAC de origen del dispositivo conectado al puerto. El beneficio llega cuando traslada un host desde un puerto en un switch en la red hacia un puerto sobre otro switch en la red. El switch asigna en forma dinámica el puerto nuevo a la VLAN adecuada para ese host.
VLAN de voz: el puerto está configurado para que esté en modo de voz a fin de que pueda admitir un teléfono IP conectado al mismo. Antes de que configure una VLAN de voz en el puerto, primero debe configurar una VLAN para voz y una VLAN para datos. En la figura, la VLAN 150 es la VLAN de voz y la VLAN 20 es la VLAN de datos. Se supone que la red ha sido configurada para garantizar que el tráfico de voz se pueda transmitir con un estado prioritario sobre la red. Cuando se enchufa por primera vez



Definición de enlace troncal de la VLAN

Un enlace troncal es un enlace punto a punto entre dos dispositivos de red que lleva más de una VLAN. Un enlace troncal de VLAN le permite extender las VLAN a través de toda una red. Cicso admite IEEE 802.1Q para la coordinación de enlaces troncales en interfaces Fast Ethernet y Gigabit Ethernet. Aprenderá más adelante en esta sección acerca de 802.1Q.


Etiquetado de trama 802.1Q

Recuerde que los switches son dispositivos de Capa 2. Sólo utilizan la información del encabezado de trama de Ethernet para enviar paquetes. El encabezado de trama no contiene la información que indique a qué VLAN pertenece la trama. Posteriormente, cuando las tramas de Ethernet se ubican en un enlace troncal, necesitan información adicional sobre las VLAN a las que pertenecen. Esto se logra por medio de la utilización del encabezado de encapsulación 802.1Q. Este encabezado agrega una etiqueta a la trama de Ethernet original y especifica la VLAN a la que pertenece la trama.



VLAN nativas y enlace troncal 802.1Q

Ahora que el usuario sabe más acerca de cómo un switch etiqueta una trama con la VLAN adecuada, es momento de explorar la manera en que la VLAN nativa admite el switch en el manejo de tramas etiquetadas y sin etiquetar que llegan en un puerto de enlace troncal 802.1Q.

Tramas etiquetadas en la VLAN nativa

Algunos dispositivos que admiten enlaces troncales etiquetan la VLAN nativa como comportamiento predeterminado. El tráfico de control enviado en la VLAN nativa debe estar sin etiquetar. Si un puerto de enlace troncal 802.1Q recibe una trama etiquetada en la VLAN nativa, éste descarta la trama. Como consecuencia, al configurar un puerto de switch en un switch Cisco, es necesario identificar estos dispositivos y configurarlos de manera que no envíen tramas etiquetadas en la VLAN nativa. Los dispositivos de otros proveedores que admiten tramas etiquetadas en la VLAN nativa incluyen: teléfonos IP, servidores, routers y switches que no pertenecen a Cisco.

Tramas sin etiquetar en la VLAN nativa

Cuando un puerto de enlace troncal de switch Cisco recibe tramas sin etiquetar, éste envía esas tramas a la VLAN nativa. Como debe recordar, la VLAN nativa predeterminada es la VLAN 1. Al configurar un puerto de enlace troncal 802.1Q, se asigna el valor del ID de la VLAN nativa al ID de la VLAN de puerto predeterminada (PVID). Todo el tráfico sin etiquetar que ingresa o sale del puerto 802.1Q se envía en base al valor del PVID. Por ejemplo, si la VLAN 99 se configura como la VLAN nativa, el PVID es 99 y todo el tráfico sin etiquetar se envía a la VLAN 99.







domingo, 10 de junio de 2012

CAPITULO 2


VIDEOSSSSS...................

http://www.youtube.com/watch?v=kipWu1DL2gI



http://www.youtube.com/watch?v=n_8DMgaYwdA




CAPITULO 2
En este tema se describirán los componentes clave del estándar Ethernet que desempeñan un importante papel en el diseño y en la implementación de las redes de conmutación. Se analizará cómo funcionan las comunicaciones Ethernet y el papel que desempeñan los switches en el proceso de comunicación.

CSMA/CD

Las señales de Ethernet se transmiten a todos los hosts que están conectados a la LAN mediante un conjunto de normas especiales que determinan cuál es la estación que puede tener acceso a la red. El conjunto de normas que utiliza Ethernet se basa en la tecnología de acceso múltiple por detección de portadora y detección de colisiones (CSMA/CD, carrier sense multiple access/collision detect) IEEE. Seguramente recordará de CCNA Exploration: Aspectos básicos de networking, que CSMA/CD se utiliza solamente con la comunicación half-duplex que suele encontrarse en los hubs. Los switches full-duplex no utilizan CSMA/CD.

Detección de portadora

En el método de acceso CSMA/CD, todos los dispositivos de red que tienen mensajes para enviar deben escuchar antes de transmitir.

Si un dispositivo detecta una señal de otro dispositivo, espera un período determinado antes de intentar transmitirla.

Las comunicaciones en una red LAN conmutada se producen de tres maneras: unicast, broadcast y multicast:

Unicast: Comunicación en la que un host envía una trama a un destino específico. En la transmisión unicast sólo existen un emisor y un receptor. La transmisión unicast es el modo de transmisión predominante en las LAN y en Internet. Algunos ejemplos de protocolos que usan transmisiones unicast son: HTTP, SMTP, FTP y Telnet.

Broadcast: Comunicación en la que se envía una trama desde una dirección hacia todas las demás direcciones.
multicast: Comunicación en la que se envía una trama a un grupo específico de dispositivos o clientes

Half Duplex: La comunicación half-duplex se basa en un flujo de datos unidireccional en el que el envío y la recepción de datos no se producen al mismo tiempo. Esto es similar a la función de las radios de dos vías o dos walki-talkies en donde una sola persona puede hablar a la vez. Si una persona habla mientras lo hace la otra, se produce una colisión. Por ello, la comunicación half-duplex implementa el CSMA/CD con el objeto de reducir las posibilidades de que se produzcan colisiones y detectarlas en caso de que se presenten. Las comunicaciones half-duplex presentan problemas de funcionamiento debido a la constante espera, ya que el flujo de datos sólo se produce en una dirección a la vez.


Configuración del puerto de switch

El puerto de un switch debe configurarse con parámetros dúplex que coincidan con el tipo de medio. Más adelante en este capítulo se configurarán los parámetros de dúplex. Los switches Cisco Catalyst cuentan con tres parámetros:

La opción auto establece el modo autonegociación de dúplex. Cuando este modo se encuentra habilitado, los dos puertos se comunican para decidir el mejor modo de funcionamiento.
La opción full establece el modo full-duplex.
La opción half establece el modo half-duplex.


Dominios de broadcast

Si bien los switches hacen pasar por un filtro a la mayoría de las tramas según las direcciones MAC, no hacen lo mismo con las tramas de broadcast. Para que otros switches de la LAN obtengan tramas de broadcast, éstas deben ser reenviadas por switches. Una serie de switches interconectados forma un dominio de broadcast simple. Sólo una entidad de Capa 3, como un router o una LAN virtual (VLAN), puede detener un dominio de broadcast de Capa 3. Los routers y las VLAN se utilizan para segmentar los dominios de colisión y de broadcast.



CAPITULO 1

CAPITULO 1 TEORIA.


INRODUCCION.


Una red jerárquica en una empresa mediana

Examinemos un modelo de red jerárquica aplicada a una empresa. En la figura, las capas de acceso, de distribución y núcleo se encuentran separadas en jerarquías bien definidas. Esta representación lógica contribuye a que resulte fácil ver qué switches desempeñan qué función. Es mucho más difícil ver estas capas jerárquicas cuando la red se instala en una empresa.

Beneficios de una red jerárquica

Existen muchos beneficios asociados con los diseños de la red jerárquica.



Escalabilidad

Las redes jerárquicas escalan muy bien. La modularidad del diseño le permite reproducir exactamente los elementos del mismo a medida que la red crece. Debido a que cada instancia del módulo es consistente, resulta fácil planificar e implementar la expansión.


Redundancia

A medida que crece una red, la disponibilidad se torna más importante. Puede aumentar radicalmente la disponibilidad a través de implementaciones redundantes fáciles con redes jerárquicas.


Rendimiento

El rendimiento de la comunicación mejora al evitar la transmisión de datos a través de switches intermediarios de bajo rendimiento


Seguridad

La seguridad mejora y es más fácil de administrar. Es posible configurar los switches de la capa de acceso con varias opciones de seguridad del puerto que proveen control sobre qué dispositivos se permite conectar a la red.


Redes separadas de voz, video y datos

Como se puede ver en la figura, una red de voz contiene líneas telefónicas aisladas que ejecutan un switch PBX para permitir la conectividad telefónica a la Red pública de telefonía conmutada (PSTN). Cuando se agrega un teléfono nuevo, se debe ejecutar una línea nueva de regreso al PBX. El switch del PBX se ubica habitualmente en un armario para el cableado de Telco, separado de los armarios para el cableado de datos y video. Los armarios para el cableado con frecuencia se separan porque el personal de apoyo necesita acceso a cada sistema. Sin embargo, mediante el uso de una red jerárquica apropiadamente diseñada y la implementación de políticas de QoS que dan prioridad a los datos de audio, los datos de voz se pueden converger en una red de datos existente con muy poco o ningún impacto en la calidad del audio.



Análisis de los medios de almacenamientos de datos y de los servidores de datos

Al analizar el tráfico en una red, se debe considerar dónde se ubican los medios de almacenamiento y los servidores de datos de manera que se pueda determinar el impacto del tráfico en la red. Los medios de almacenamiento de datos pueden ser servidores, redes de almacenamiento de datos (SAN), almacenamiento adjunto a redes (NAS), unidades de copia de respaldo en cinta o cualquier otro dispositivo o componente en los que se almacenan grandes cantidades de datos.

Al considerar el tráfico para los medios de almacenamiento y los servidores de datos, se debe considerar el tráfico cliente-servidor y el tráfico servidor-servidor.

Según se observa en la figura, el tráfico entre el cliente y el servidor es el tráfico generado cuando el dispositivo de un cliente accede a los datos de los medios de almacenamiento o de los servidores de datos. El tráfico entre el cliente y el servidor habitualmente atraviesa múltiples switches para alcanzar su destino. El agregado de ancho de banda y las velocidades de reenvío del switch son factores importantes que se deben considerar cuando se intenta eliminar cuellos de botella para este tipo de tráfico.